中文字幕 另类精品,亚洲欧美一区二区蜜桃,日本在线精品视频免费,孩交精品乱子片免费

<sup id="3hn2b"></sup>

    1. <sub id="3hn2b"><ol id="3hn2b"></ol></sub><legend id="3hn2b"></legend>

      1. <xmp id="3hn2b"></xmp>

      2. "); //-->

        博客專欄

        EEPW首頁(yè) > 博客 > 13 種必須掌握的概率分布 !干貨總結(jié)!

        13 種必須掌握的概率分布 !干貨總結(jié)!

        發(fā)布人:數(shù)據(jù)派THU 時(shí)間:2023-05-22 來(lái)源:工程師 發(fā)布文章
        01 概率分布概述


        圖片

        • 共軛意味著它有共軛分布的關(guān)系。


        在貝葉斯概率論中,如果后驗(yàn)分布 p(θx)與先驗(yàn)概率分布 p(θ)在同一概率分布族中,則先驗(yàn)和后驗(yàn)稱為共軛分布,先驗(yàn)稱為似然函數(shù)的共軛先驗(yàn)。共軛先驗(yàn)維基百科在這里(https://en.wikipedia.org/wiki/Conjugate_prior)。

        • 多分類表示隨機(jī)方差大于 2。
        • n 次意味著我們也考慮了先驗(yàn)概率 p(x)。
        • 為了進(jìn)一步了解概率,我建議閱讀 [pattern recognition and machine learning,Bishop 2006]。

        02 分布概率與特征
        1、均勻分布(連續(xù))

        代碼:

        https://github.com/graykode/distribution-is-all-you-need/blob/master/uniform.py


        均勻分布在 [a,b] 上具有相同的概率值,是簡(jiǎn)單概率分布。
        圖片
        2、伯努利分布(離散)

        代碼:

        https://github.com/graykode/distribution-is-all-you-need/blob/master/bernoulli.py


        • 先驗(yàn)概率 p(x)不考慮伯努利分布。因此,如果我們對(duì)最大似然進(jìn)行優(yōu)化,那么我們很容易被過(guò)度擬合。
        • 利用二元交叉熵對(duì)二項(xiàng)分類進(jìn)行分類。它的形式與伯努利分布的負(fù)對(duì)數(shù)相同。

        圖片
        3、二項(xiàng)分布(離散)

        代碼:

        https://github.com/graykode/distribution-is-all-you-need/blob/master/binomial.py


        • 參數(shù)為 n 和 p 的二項(xiàng)分布是一系列 n 個(gè)獨(dú)立實(shí)驗(yàn)中成功次數(shù)的離散概率分布。
        • 二項(xiàng)式分布是指通過(guò)指定要提前挑選的數(shù)量而考慮先驗(yàn)概率的分布。

        圖片
        4、多伯努利分布,分類分布(離散)

        代碼:

        https://github.com/graykode/distribution-is-all-you-need/blob/master/categorical.py


        • 多伯努利稱為分類分布。
        • 交叉熵和采取負(fù)對(duì)數(shù)的多伯努利分布具有相同的形式。

        圖片
        5、多項(xiàng)式分布(離散)

        代碼:

        https://github.com/graykode/distribution-is-all-you-need/blob/master/multinomial.py


        多項(xiàng)式分布與分類分布的關(guān)系與伯努爾分布與二項(xiàng)分布的關(guān)系相同。
        圖片
        6、β分布(連續(xù))

        代碼:

        https://github.com/graykode/distribution-is-all-you-need/blob/master/beta.py


        • β分布與二項(xiàng)分布和伯努利分布共軛。
        • 利用共軛,利用已知的先驗(yàn)分布可以更容易地得到后驗(yàn)分布。
        • 當(dāng)β分布滿足特殊情況(α=1,β=1)時(shí),均勻分布是相同的。

        圖片
        7、Dirichlet 分布(連續(xù))
        代碼:https://github.com/graykode/distribution-is-all-you-need/blob/master/dirichlet.py
        • dirichlet 分布與多項(xiàng)式分布是共軛的。
        • 如果 k=2,則為β分布。

        圖片
        8、伽馬分布(連續(xù))

        代碼:

        https://github.com/graykode/distribution-is-all-you-need/blob/master/gamma.py


        • 如果 gamma(a,1)/gamma(a,1)+gamma(b,1)與 beta(a,b)相同,則 gamma 分布為β分布。
        • 指數(shù)分布和卡方分布是伽馬分布的特例。

        圖片
        9、指數(shù)分布(連續(xù))
        代碼:https://github.com/graykode/distribution-is-all-you-need/blob/master/exponential.py
        指數(shù)分布是 α 為 1 時(shí) γ 分布的特例。
        圖片
        10、高斯分布(連續(xù))
        代碼:https://github.com/graykode/distribution-is-all-you-need/blob/master/gaussian.py
        高斯分布是一種非常常見(jiàn)的連續(xù)概率分布。

        圖片
        11、正態(tài)分布(連續(xù))
        代碼:https://github.com/graykode/distribution-is-all-you-need/blob/master/normal.py
        正態(tài)分布為標(biāo)準(zhǔn)高斯分布,平均值為 0,標(biāo)準(zhǔn)差為 1。

        圖片
        12、卡方分布(連續(xù))
        代碼:https://github.com/graykode/distribution-is-all-you-need/blob/master/chi-squared.py
        • k 自由度的卡方分布是 k 個(gè)獨(dú)立標(biāo)準(zhǔn)正態(tài)隨機(jī)變量的平方和的分布。
        • 卡方分布是 β 分布的特例

        圖片
        13、t 分布(連續(xù))
        代碼:https://github.com/graykode/distribution-is-all-you-need/blob/master/student-t.py
        t 分布是對(duì)稱的鐘形分布,與正態(tài)分布類似,但尾部較重,這意味著它更容易產(chǎn)生遠(yuǎn)低于平均值的值。
        圖片
        via:https://github.com/graykode/distribution-is-all-you-need


        *博客內(nèi)容為網(wǎng)友個(gè)人發(fā)布,僅代表博主個(gè)人觀點(diǎn),如有侵權(quán)請(qǐng)聯(lián)系工作人員刪除。



        關(guān)鍵詞: AI

        相關(guān)推薦

        技術(shù)專區(qū)

        關(guān)閉