中文字幕 另类精品,亚洲欧美一区二区蜜桃,日本在线精品视频免费,孩交精品乱子片免费

<sup id="3hn2b"></sup>

    1. <sub id="3hn2b"><ol id="3hn2b"></ol></sub><legend id="3hn2b"></legend>

      1. <xmp id="3hn2b"></xmp>

      2. 新聞中心

        EEPW首頁 > 手機與無線通信 > 設計應用 > 一種基于DSP的MIMO系統(tǒng)空時編碼盲識別方法

        一種基于DSP的MIMO系統(tǒng)空時編碼盲識別方法

        作者: 時間:2014-07-07 來源:網絡 收藏

          摘要 提出了一種基于TigerSHARC TS201S實現(xiàn)的系統(tǒng)方法的設計與實現(xiàn),該設計能夠在非合作條件下,利用在時間分集和空間分集下,所表現(xiàn)出的不同時滯相關性,實現(xiàn)方式。天線接收信號經過預白化,時滯相關度計算,最終利用碼字表判決輸出。經驗證,該系統(tǒng)性能穩(wěn)定,易于實現(xiàn),且對空時編碼方式具有較高的精度。

        本文引用地址:http://www.antipu.com.cn/article/249275.htm

          關鍵詞 ;多輸入多輸出系統(tǒng);空時編碼;盲識別;時滯相關

          空時編碼(Space—Time Block Coding,STBC)是達到或接近無線信道容量的一種有效的編碼方式。空時編碼方式的盲識別是通信對抗領域需迫切研究的領域,其能夠為系統(tǒng)對抗技術提供基礎和技術支撐,具有重要的研究價值。

          時滯相關算法是根據(jù)不同空時編碼的相關矩陣在不同時延統(tǒng)計下的差異性,采用逐級對比,實現(xiàn)對空時編碼方式的盲識別。擁有計算精度高,抗頻偏效果好等優(yōu)點。文中提出一種基于ADI公司DSP芯片TigerSHARCTS201S的空時編碼盲識別方案設計和實現(xiàn)。

          1 系統(tǒng)硬件設計

          1.1 系統(tǒng)硬件框圖

          系統(tǒng)硬件框圖如圖1所示。由信號處理、信號采集、電源、時鐘4部分構成,信號采集由CPLD和ADC組成,負責完成A/D轉換,信號處理由TS201S芯片及其外設組成,用于存儲A/D采樣的數(shù)據(jù),并進行空時碼盲識別運算處理。電源模塊為其他所有模塊提供正常工作所需的電壓,時鐘模塊中由晶振和倍頻芯片組成,提供系統(tǒng)所需時鐘。

          

         

          系統(tǒng)工作時,設備首先通電初始化,從Flash中載入用戶應用程序,繼而通過CPLD控制ADC進行數(shù)據(jù)采集,并利用DMA中斷方式讀取數(shù)據(jù)并進行編碼識別運算。

          1.2 TigerSHARC TS201S簡介

          TigerSHARC TS201S兼有ASIC和FPGA的信號處理性能和指令集處理器的高度可編程性與靈活性,適用于高性能、大存儲量的信號處理與圖像應用。

          TS201S內部分為DSP核和I/O接口兩部分,通過4條總線傳輸數(shù)據(jù)、地址和控制信息。并提供完全可中斷的編程模式,支持匯編和C/C++語言編程,32/40位的浮點運算及最高64位的定點運算。在600 MHz時鐘速率下,可達到每秒48億次乘加運算。

          1.3 電源、時鐘和總線方案設計

          TS201S和AD7864對電源的要求較高,以TS201S內核時鐘500 MHz為例,4個電源VDD、VDD_A、VDD_IO、VDD_DRAM的精度要求控制在5%以內。因此系統(tǒng)中的電源芯片采用了,其精度可達1%。

          時鐘模塊中,晶振產生27 MHz時鐘通過倍頻芯片得到54 MHz時鐘后進入CPLD,一方面作為TS201S的系統(tǒng)時鐘SCLK,另一方面在CPLD內12分頻后作為AD7864的工作時鐘信號AD_CLK。為防止其對系統(tǒng)電源產生耦合干擾,晶振和倍頻芯片的電源與本板電源之間要用電感或磁珠進行隔離。

          在系統(tǒng)總線負載較重的情況下,設計不當會限制總線只能在低頻下工作甚至無法讀取數(shù)據(jù)。由于環(huán)形結構上任一負載的變化均會影響到其他負載的工作,設計中采用了星形總線結構,如圖2所示。

          

         

          1.4 信號采集方案設計

          信號采集模塊由CPLD和兩片ADC組成,A/D轉換芯片采用AD公司生產的AD7864,其轉換精度12位,最高吞吐量520 ksample·s-1,轉換時間最快為1.65μs,采樣保持0.35μs,此外其單電源和低功耗特性最低可達20 Uw,其能夠滿足系統(tǒng)的要求,簡化硬件設計。

          信號采集前,需對AD7864的一些輸入引腳進行配置,南Alterta公司的CPLD產品MAX3256完成。如圖3所示,CONVST為使能輸入引腳,置位高可控制AD7864啟動。CS為片選信號,低電平有效。RD為讀使能,低電平有效,當CS有效且RD為低,才允許AD7864輸出轉換結果,此時WR必須為高。引腳SL1~SL4是AD7864的通道選擇輸入引腳,高電平有效。H/S SEL為高時表示將通過軟件方式來選擇A/D轉換通道,反之表示硬件選擇。當轉換結束后,EOC引腳輸入低電平。

          

         

          AD7864采用分時輸出方式,采樣信號來自TS201S的定時/計數(shù)器,每次計數(shù)器滿時TMROE引腳會產生4個總線時鐘的高電平,CPLD中對此信號做反向后作為AD7864的CONVST信號,在數(shù)據(jù)傳輸中,片1占低位數(shù)據(jù)線,片2占高位數(shù)據(jù)線,分時可防止總線沖突。

          1.5 顯示方案設計

          系統(tǒng)采用FLAG PIN外接LED做為進度顯示,DSP在執(zhí)行到不同的處理進度時通過改變FLAG PIN口的電平控制對應的LED導通,以指示當前數(shù)據(jù)分析的步驟。圖4為外接LED的連接圖,每個FLAG PIN上的LED均不影響其他FLAG PIN接口,在LED后使用了一個上拉電阻接VCC。

          

         

          系統(tǒng)復位時,所有FLAG PIN置高電平,ADC采集完畢觸發(fā)DMA中斷,從SDRAM中讀取數(shù)據(jù),并進入到預白化處理,此時FLAG PIN1至低電平,依據(jù)算法,對白化后的數(shù)據(jù)進行時滯相關分析,并利用碼字表判決響應碼型時,并分別拉低FLAG PIN2和FLAG PIN3。

          該種方法配置靈活、軟件簡單,系統(tǒng)采用4個FLAGPIN來布置顯示,DSP擁有足夠的IO接口使用,在設計時充分利用了硬件資源,同時利用DMA中斷,有效提高了CPU的效率,也實現(xiàn)了資源的共享和并行處理,同時還在芯片運算過程中及時發(fā)現(xiàn)故障并定位處理。

          2 系統(tǒng)軟件設計

          2.1 空時編碼盲識別原理

          STBC通過在時間與空間進行聯(lián)合編碼達到提高系統(tǒng)傳輸性能的目的,因此在不同時刻從不同天線發(fā)送的數(shù)據(jù)具有一定的相關性,而不同空時編碼之間的相關度并不同,因此可利用該相關度來區(qū)分不同的碼型,從而將空時編碼的模式識別出來。

        c++相關文章:c++教程



        上一頁 1 2 下一頁

        評論


        相關推薦

        技術專區(qū)

        關閉