中文字幕 另类精品,亚洲欧美一区二区蜜桃,日本在线精品视频免费,孩交精品乱子片免费

<sup id="3hn2b"></sup>

    1. <sub id="3hn2b"><ol id="3hn2b"></ol></sub><legend id="3hn2b"></legend>

      1. <xmp id="3hn2b"></xmp>

      2. 新聞中心

        EEPW首頁 > 模擬技術(shù) > 設(shè)計(jì)應(yīng)用 > 釋放開源評估平臺的潛力,制作超聲發(fā)射子系統(tǒng)的原型

        釋放開源評估平臺的潛力,制作超聲發(fā)射子系統(tǒng)的原型

        作者:Sunshine Grace Cabatan,主管工程師;Melissa Lorenz Lacanlale,產(chǎn)品工程師 時(shí)間:2023-11-24 來源:電子產(chǎn)品世界 收藏
        編者按:本文討論了開發(fā)先進(jìn)超聲設(shè)備所面臨的挑戰(zhàn)。利用現(xiàn)有評估平臺既可降低系統(tǒng)開發(fā)成本,也可縮短超聲系統(tǒng)發(fā)射模塊的特性測試時(shí)間。本文介紹了如何同步多個(gè)通道的分步過程,這是波束控制的一個(gè)關(guān)鍵概念,也是醫(yī)學(xué)成像所特有的概念。


        本文引用地址:http://www.antipu.com.cn/article/202311/453273.htm

        引言

        在任何新技術(shù)開發(fā)過程中,在將新型號或下一代超聲設(shè)備商業(yè)化之前,制造商都會經(jīng)歷硬件開發(fā)和測試以及系統(tǒng)集成和驗(yàn)證等階段。開發(fā)高通道數(shù)成像超聲子系統(tǒng)預(yù)計(jì)需要多年的努力。此外,在對系統(tǒng)考慮因素知之甚少的情況下貿(mào)然開始波束引導(dǎo)或發(fā)射子系統(tǒng)的硬件原型制作,可能會導(dǎo)致硬件原型需要多次修改,帶來高昂的成本?,F(xiàn)在,開發(fā)人員可以使用一個(gè)完整系統(tǒng)(原型板和開源軟件)來模擬超聲設(shè)備子系統(tǒng)的操作,從而降低超聲設(shè)備制造商的開發(fā)成本并加快上市時(shí)間。

        基于的TxDAC?評估板和開源Mbed軟件

        1700798305989040.png

        圖1 支持Mbed的AD9106評估平臺

        AD9106-ARDZ-EBZ評估平臺兼容基于Arm?且支持Mbed的電路板(如SDP-K1),并且可以連接到 Uno接頭。該評估設(shè)置只能由USB供電,無需高頻波形發(fā)生器來提供時(shí)鐘輸入。該評估板默認(rèn)使用板載156.25 MHz晶振作為時(shí)鐘源,但提供了外部時(shí)鐘選項(xiàng)。DAC輸出可以通過變壓器耦合,或使用板載放大器進(jìn)行評估,這是唯一需要7 VDC至12 VDC 30 W AC-DC適配器的情況。參見圖1。

        除硬件之外,評估板網(wǎng)頁上還提供了示例開源代碼,可用作開發(fā)目標(biāo)應(yīng)用固件的起點(diǎn)。評估板和示例源代碼可以根據(jù)需要加以定制,以便與其他Mbed平臺配合使用。新的評估系統(tǒng)可以輕松集成到現(xiàn)有系統(tǒng)中,因而簡化了原型制作。

        1700798334836665.png

        圖2 AD9106功能框圖

        評估板安裝有四通道、低功耗、12位、180 MSPS、TxDAC AD9106和波形發(fā)生器。該DAC的高采樣速率非常適合1 MHz至40 MHz范圍內(nèi)的超聲工作頻率,外部成像設(shè)備通常使用1 MHz至15 MHz的頻率,而靜脈內(nèi)心血管設(shè)備使用高達(dá)40 MHz的頻率。此外,AD9106高度集成,具有用于生成復(fù)雜波形的片內(nèi)模式存儲器,以及使用24位調(diào)諧字、支持10.8 Hz/LSB頻率分辨率的直接數(shù)字頻率合成器(DDS)。該器件也是高度可編程的,四個(gè)DAC通道中的每個(gè)通道的模式周期、啟動延遲、增益和偏移都可以獨(dú)立改變。此外,它具有低功耗特性(在3.3 V、4 mA輸出和180 MSPS下,每通道功耗78.8 mW,總計(jì)315.25 mW),這是超聲設(shè)備等大型多通道系統(tǒng)的一個(gè)重要考慮因素。

        提高超聲設(shè)備的精度和圖像分辨率

        1700798364100120.png

        圖3 醫(yī)療超聲前端信號鏈

        推車式超聲系統(tǒng)在圖像質(zhì)量或分辨率方面優(yōu)于手持設(shè)備,主要是因?yàn)橥ǖ罃?shù)量差異巨大。然而,通道數(shù)量可能因制造商而異。成本和功耗是超聲設(shè)備等大型系統(tǒng)的重要考慮因素,因此業(yè)界使用了一些技術(shù)來盡量減小這兩個(gè)因素。在圖3所示的典型超聲信號鏈中,如果我們考慮到每個(gè)發(fā)射器路徑(DAC + 高壓放大器,驅(qū)動探頭尖端處換能器陣列中的一個(gè)元件)都對應(yīng)一個(gè)接收器路徑(集成模擬前端),那么通道數(shù)的確定相對簡單。根據(jù)這個(gè)假設(shè),我們可以說超聲系統(tǒng)中的通道數(shù)介于16到256之間。高端系統(tǒng)(其中大部分推車式)中的通道數(shù)為64或更多。對于便攜式、中低端系統(tǒng),16至64個(gè)通道更為常見。

        1700798459325363.png

        圖4 波束引導(dǎo)和聚焦

        在超聲系統(tǒng)的發(fā)射器路徑中,聲能或聲波束掃過身體。聲波由探頭前端處的壓電換能器元件從電信號轉(zhuǎn)換而來。如圖4所示,每個(gè)電信號或發(fā)射器信號的相位和幅度均經(jīng)過編程,引導(dǎo)入射能量束沿著一條線進(jìn)入身體。從器官組織反射的聲波被換能器元件再次轉(zhuǎn)換為電能。目標(biāo)的位置或距離將根據(jù)換能器陣列中元件之間的時(shí)間延遲顯示在屏幕上。因此,為了顯示人體內(nèi)部的準(zhǔn)確圖像,同步或者說能夠控制發(fā)射器信號之間的延遲至關(guān)重要。

        多芯片同步的要求

        為了成功同步多個(gè)DDS DAC(如AD9106),必須控制差分時(shí)鐘輸入(CLKP和CLKN)和TRIGGER引腳的下降沿。

        1700798490204886.png

        圖5 建議時(shí)鐘分配布局(左)和次優(yōu)布局(右)

        為了滿足同步的第一個(gè)要求,PCB布局應(yīng)采用謹(jǐn)慎的時(shí)鐘分配做法。參見圖5。這將充分減少REF CLK邊沿之間的相位差(它會導(dǎo)致DDS輸出處出現(xiàn)成比例的相位差)。

        模式生成由AD9106的TRIGGER引腳的下降沿觸發(fā),因此同步的下一個(gè)要求是確保TRIGGER邊沿一致。圖5中的布局技術(shù)也可應(yīng)用于從控制器的數(shù)字輸出布線到每個(gè)AD9106器件的TRIGGER PCB走線。

        利用AD9106-ARDZ-EBZ評估多芯片同步

        為了評估多個(gè)AD9106 DAC的同步,可以使用兩個(gè)AD9106評估板和一個(gè)SDP-K1控制器板。

        1700798511416899.png

        圖6 多個(gè)AD9106器件同步的系統(tǒng)示意圖(簡化示意圖,未顯示所有連接)

        材料

        ■   兩個(gè)AD9106-ARDZ-EBZ板

        ■   用于電路板與PC連接的USB電纜

        ■   SDP-K1

        ■   一個(gè)12 V壁式電源適配器

        ■   信號發(fā)生器

        ■   可變長度SMA端接電纜

        ■   一個(gè)SMA端接T型分路器

        ■   母對母連接器導(dǎo)線

        硬件設(shè)置

        連接三個(gè)電路板之前,配置兩個(gè)AD9106-ARDZ-EBZ板,使DAC輸出連接到板載放大器,并且DAC時(shí)鐘由連接到J10的外部源提供。關(guān)于JP1和JP2的正確連接,請參閱Eval-AD9106 Wiki用戶指南中的圖14b。另外,請?jiān)O(shè)置其中一個(gè)AD9106-ARDZ-EBZ板,使板上器件的CSB引腳連接到交替GPIO引腳(安裝R39而不是R38)。確保SDP-K1的VIO_ADJUST設(shè)置為3.3 V。

        然后將高頻波形發(fā)生器的輸出連接到分離式SMA端接T形分路器,它可以連接不同長度的SMA端接同軸電纜。

        1700798571807330.png

        圖7 為實(shí)現(xiàn)同步而建議采用的時(shí)鐘輸入和TRIGGER引腳連接

        接下來應(yīng)設(shè)置圖7所示每個(gè)板的時(shí)鐘輸入和TRIGGER引腳的連接,然后設(shè)置表1中的其余連接。將板1安裝到SDP-K1 Arduino Uno端口,然后將板2放置在與板1成180°的位置,以使兩個(gè)板的TRIGGER引腳并排放置。這是TRIG2到SDP-K1數(shù)字輸出的最短連接,由此TRIG1和TRIG2路徑大致相等。

        1700798603189502.png

        圖8 實(shí)際設(shè)置

        應(yīng)用了所有連接的實(shí)際設(shè)置如圖8所示。表1總結(jié)了板對板連接。

        表1 SDP-K1和兩個(gè)AD9106-ARDZ-EBZ板的板對板連接

        SDP-K1 Arduino Uno連接器

        AD9106-ARDZ-EBZ上的相連網(wǎng)絡(luò)

        引腳編號

        引腳功能

        板1

        板2

        P2.1

        NC



        P2.2

        IO_PWR_SUPPLY

        IOREF

        IOREF

        P2.3

        MAIN_RESET

        RESET

        RESET

        P2.4

        SDRAM_&_ARDUINO_PWR_SUPPLY

        (3.3 V)

        3.3 V

        3.3 V

        P2.5

        +5V_CON

        5V

        5 V

        P2.6

        GND

        GND

        GND

        P2.7

        GND

        GND

        GND

        P5.1

        ARDUINO_GPIOO/RX

        VIN

        VIN

        P5.2

        TX+1



        P5.3

        GPIO2

        EN_CVDDX

        EN_CVDDX

        P5.4

        GPIO3/PWM



        P5.5

        GPIO4

        SHDN_N_LT3472

        SHDN_N_LT3472

        P5.6

        GPIOS/PWM



        P5.7

        GPIO6/PWM



        P5.8

        GPIO7

        TRIGGERB

        TRIGGERB

        P4.1

        GPIO8

        RESETB

        RESETB

        P4.2

        GPIO9/PWM


        SPI_CSB_ALT

        P4.3

        GP1010/PWM/CS

        SPI_CSB_DFLT


        P4.4

        GPIO11/PWM/MOSI

        STD_SPI_MOSI

        STD_SPI_MOSI

        P4.5

        GPIO12/MISO

        STD_SPI_MISO

        STD_SPI_MISO

        P4.6

        GPIO13/SCK

        STD_SPI_SCK

        STD_SPI_SCK

        P4.7

        GND

        GND

        GND

        P4.8

        AREF



        P4.9

        SDA



        P4.10

        SCL



        軟件

        我們提供了在Mbed開源軟件上開發(fā)的示例源代碼。開發(fā)者稍加修改即可通過SPI對兩個(gè)評估板上的每個(gè)器件進(jìn)行獨(dú)立編程。寄存器值以及代碼的其他部分可以輕松定制,具體而言是示例3中的寄存器值(DDS生成的正弦波,具有不同的啟動延遲和數(shù)字增益設(shè)置。修改代碼后,使用Mbed在線編譯器編譯程序。然后將生成的二進(jìn)制文件拖放到SDP-K1驅(qū)動器中。同樣的過程也適用于其他應(yīng)用。

        說明

        如圖6的簡化圖所示,器件間的輸出同步是通過測量多個(gè)器件的同一DAC輸出通道(即通道1)之間的延遲來實(shí)現(xiàn)的。相對于TRIG1(控制器板到板1)改變TRIG2(控制器板到板2)的連接器長度,以及相對于時(shí)鐘1(時(shí)鐘發(fā)生器到板1)改變時(shí)鐘2(時(shí)鐘發(fā)生器到板2)的連接器長度,這兩種情況對同步的影響可以使用示波器進(jìn)行觀察。

        結(jié)果

        圖9記錄了改變觸發(fā)連接器長度時(shí)的測量結(jié)果,而圖10記錄了改變時(shí)鐘連接器長度時(shí)的測量結(jié)果。

        1700798633500909.png

        圖9 不同TRIG2連接器長度下板1和板2的OUT 1之間的延遲

        如果TRIGGER引腳所連接的數(shù)字輸出具有與STM32F469NI(SDP-K1上的微控制器)類似的驅(qū)動特性,那么TRIGGER走線容差只要在5英寸以內(nèi),就能維持器件間同步。

        1700798651337368.png

        圖10 不同時(shí)鐘2連接器長度下板1和板2的OUT 1之間的延遲

        匹配的時(shí)鐘輸入走線將導(dǎo)致最短的器件到器件的輸出延遲,但根據(jù)特定系統(tǒng)中可容忍的延遲,可以相應(yīng)地調(diào)整時(shí)鐘走線長度容差。

        結(jié)語

        在超聲設(shè)備制造中,利用AD9106評估平臺提供的設(shè)計(jì)靈活性和定制優(yōu)勢可以縮短開發(fā)流程和上市時(shí)間。無需設(shè)計(jì)新的發(fā)射子系統(tǒng)原型即可評估多個(gè)發(fā)射DAC(如AD9106)的同步。通過使用兩個(gè)AD9106-ARDZ-EBZ板、一個(gè)SDP-K1控制器板并對示例Mbed代碼進(jìn)行少量修改,就能實(shí)現(xiàn)對同步的評估。

        關(guān)于作者

        Sunshine Grace Cabatan于2019年加入公司,擁有約五年的硬件工程經(jīng)驗(yàn)。她是菲律賓高級數(shù)據(jù)轉(zhuǎn)換器產(chǎn)品應(yīng)用團(tuán)隊(duì)的首批成員之一。她于2013年獲得菲律賓大學(xué)(奎松市迪利曼)電子與通信工程理學(xué)學(xué)士學(xué)位,并于2014年通過電子工程師執(zhí)照考試。

        Melissa Lorenz Lacanlale于2016年加入公司菲律賓分公司,擔(dān)任產(chǎn)品工程師,為多家東南亞最終測試分包商提供支持。隨著她對混合信號的興趣日益濃厚,她于2021年加入了高級數(shù)據(jù)轉(zhuǎn)換器產(chǎn)品應(yīng)用工程師團(tuán)隊(duì)。她于2015年獲得菲律賓馬普阿大學(xué)電子與通信工程理學(xué)學(xué)士學(xué)位。



        評論


        相關(guān)推薦

        技術(shù)專區(qū)

        關(guān)閉