中文字幕 另类精品,亚洲欧美一区二区蜜桃,日本在线精品视频免费,孩交精品乱子片免费

<sup id="3hn2b"></sup>

    1. <sub id="3hn2b"><ol id="3hn2b"></ol></sub><legend id="3hn2b"></legend>

      1. <xmp id="3hn2b"></xmp>

      2. 新聞中心

        EEPW首頁 > 電源與新能源 > 設(shè)計應(yīng)用 > 半橋諧振LLC+CoolMOS開關(guān)管電路解析

        半橋諧振LLC+CoolMOS開關(guān)管電路解析

        作者: 時間:2018-08-03 來源:網(wǎng)絡(luò) 收藏

        1.摘要

        本文引用地址:http://www.antipu.com.cn/article/201808/385176.htm

        近來, LLC拓撲以其高效,高功率密度受到廣大電源設(shè)計工程師的青睞,但是這種軟開關(guān)拓撲對MOSFET的要求卻超過了以往任何一種硬開關(guān)拓撲。特別是在電源啟機,動態(tài)負載,過載,短路等情況下。CoolMOS 以其快恢復(fù)體二極管,低Qg 和Coss能夠完全滿足這些需求并大大提升電源系統(tǒng)的可靠性。

        長期以來, 提升電源系統(tǒng)功率密度,效率以及系統(tǒng)的可靠性一直是研發(fā)人員面臨的重大課題。 提升電源的開關(guān)頻率是其中的方法之一, 但是頻率的提升會影響到功率器件的開關(guān)損耗,使得提升頻率對硬開關(guān)拓撲來說效果并不十分明顯,硬開關(guān)拓撲已經(jīng)達到了它的設(shè)計瓶頸。而此時,軟開關(guān)拓撲,如LLC拓撲以其獨具的特點受到廣大設(shè)計工程師的追捧。但是… 這種拓撲卻對功率器件提出了新的要求。

        2.LLC 電路的特點

        LLC 拓撲的以下特點使其廣泛的應(yīng)用于各種之中:

        1.LLC 轉(zhuǎn)換器可以在寬負載范圍內(nèi)實現(xiàn)零電壓開關(guān)。

        2.能夠在輸入電壓和負載大范圍變化的情況下調(diào)節(jié)輸出,同時開關(guān)頻率變化相對很小。

        3.采用頻率控制,上下管的占空比都為50%.

        4.減小次級同步整流MOSFET的電壓應(yīng)力,可以采用更低的電壓MOSFET從而減少成本。

        5.無需輸出電感,可以進一步降低系統(tǒng)成本。

        6.采用更低電壓的同步整流MOSFET, 可以進一步提升效率。

        3.LLC 電路的基本結(jié)構(gòu)以及工作原理

        圖1和圖2分別給出了LLC諧振變換器的典型線路和工作波形。如圖1所示LLC轉(zhuǎn)換器包括兩個功率MOSFET(Q1和Q2),其占空比都為0.5;諧振電容Cr,副邊匝數(shù)相等的中心抽頭變壓器Tr,等效電感Lr,勵磁電感Lm,全波整流二極管D1和D2以及輸出電容Co。

        圖1 LLC諧振變換器的典型線路

        圖2 LLC諧振變換器的工作波形

        而LLC有兩個諧振頻率,Cr, Lr 決定諧振頻率fr1; 而Lm, Lr, Cr決定諧振頻率fr2。

        系統(tǒng)的負載變化時會造成系統(tǒng)工作頻率的變化,當(dāng)負載增加時, MOSFET開關(guān)頻率減小, 當(dāng)負載減小時,開關(guān)頻率增大。

        3.1 LLC諧振變換器的工作時序

        LLC變換器的穩(wěn)態(tài)工作原理如下。

        1)〔t1,t2〕

        Q1關(guān)斷,Q2開通,電感Lr和Cr進行諧振,次級D1關(guān)斷,D2開通,二極管D1約為兩倍輸出電壓,此時能量從Cr, Lr轉(zhuǎn)換至次級。直到Q2關(guān)斷。

        2)〔t2,t3〕

        Q1和Q2同時關(guān)斷,此時處于死區(qū)時間, 此時電感Lr, Lm電流給Q2的輸出電容充電,給Q1的輸出電容放電直到Q2輸出電容的電壓等于Vin.

        次級D1和D2關(guān)斷 Vd1=Vd2=0, 當(dāng)Q1開通時該相位結(jié)束。

        3)〔t3,t4〕

        Q1導(dǎo)通,Q2關(guān)斷。D1導(dǎo)通, D2關(guān)斷, 此時Vd2=2Vout

        Cr和Lr諧振在fr1, 此時Ls的電流通過Q1返回到Vin,直到Lr的電流為零次相位結(jié)束。

        4)〔t4,t5〕

        Q1導(dǎo)通, Q2關(guān)斷, D1導(dǎo)通, D2關(guān)斷,Vd2=2Vout

        Cr和Lr諧振在fr1, Lr的電流反向通過Q1流回功率地。 能量從輸入轉(zhuǎn)換到次級,直到Q1關(guān)斷該相位結(jié)束

        5)〔t5,t6)

        Q1,Q2同時關(guān)斷, D1,D2關(guān)斷, 原邊電流I(Lr+Lm)給Q1的Coss充電, 給Coss2放電, 直到Q2的Coss電壓為零。 此時Q2二極管開始導(dǎo)通。 Q2開通時相位結(jié)束。

        6)〔t6,t7〕

        Q1關(guān)斷,Q2導(dǎo)通,D1關(guān)斷, D2 開通,Cr和Ls諧振在頻率fr1, Lr 電流經(jīng)Q2回到地。 當(dāng)Lr電流為零時相位結(jié)束。

        3.2 LLC諧振轉(zhuǎn)換器異常狀態(tài)分析

        以上描述都是LLC工作在諧振模式, 接下來我們分析LLC轉(zhuǎn)換器在啟機, 短路, 動態(tài)負載下的工作情況。

        3.2.1 啟機狀態(tài)分析

        通過LLC 仿真我們得到如圖3所示的波形,在啟機第一個開關(guān)周期,上下管會同時出現(xiàn)一個短暫的峰值電流Ids1 和Ids2. 由于MOSFET Q1開通時會給下管Q2的輸出電容Coss充電,當(dāng)Vds為高電平時充電結(jié)束。而峰值電流Ids1和Ids2也正是由于Vin通過MOSFET Q1 給Q2 結(jié)電容Coss的充電而產(chǎn)生。

        圖3 LLC 仿真波形

        我們將焦點放在第二個開關(guān)周期時如圖4,我們發(fā)現(xiàn)此時也會出現(xiàn)跟第一個開關(guān)周期類似的尖峰電流,而且峰值會更高,同時MOSFET Q2 Vds也出現(xiàn)一個很高的dv/dt峰值電壓。那么這個峰值電流的是否仍然是Coss引起的呢? 我們來做進一步的研究。

        圖4 第二個開關(guān)周期波形圖

        對MOSFET結(jié)構(gòu)有一定了解的工程師都知道,MOSFET不同于IGBT,在MOSFET內(nèi)部其實寄生有一個體二極管,跟普通二極管一樣在截止過程中都需要中和載流子才能反向恢復(fù), 而只有二極管兩端加上反向電壓才能夠使這個反向恢復(fù)快速完成, 而反向恢復(fù)所需的能量跟二極管的電荷量Qrr相關(guān), 而體二極管的反向恢復(fù)同樣需要在體二極管兩端加上一個反向電壓。在啟機時加在二極管兩端的電壓Vd=Id2 x Ron. 而Id2在啟機時幾乎為零,而二極管在Vd較低時需要很長的時間來進行反向恢復(fù)。如果死區(qū)時間設(shè)置不夠,如圖5所示高的dv/dt會直接觸發(fā)MOSFET內(nèi)的BJT從而擊穿MOSFET.

        圖5

        通過實際的測試,我們可以重復(fù)到類似的波形,第二個開關(guān)周期產(chǎn)生遠比第一個開關(guān)周期高的峰值電流,同時當(dāng)MOSFET在啟機的時dv/dt高118.4V/ns. 而Vds電壓更是超出了600V的最大值。MOSFET在啟機時存在風(fēng)險。

        圖6

        3.2.2 異常狀態(tài)分析

        下面我們繼續(xù)分析在負載劇烈變化時,對LLC拓撲來說存在那些潛在的風(fēng)險。

        在負載劇烈變化時,如短路,動態(tài)負載等狀態(tài)時,LLC電路的關(guān)鍵器件MOSFET同樣也面臨著挑戰(zhàn)。

        通常負載變化時LLC 都會經(jīng)歷以下3個狀態(tài)。我們稱之為硬關(guān)斷, 而右圖中我們可以比較在這3個時序當(dāng)中,傳統(tǒng)MOSFET和CoolMOS內(nèi)部載流子變化的不同, 以及對MOSFET帶來的風(fēng)險。

        (點擊圖片可查看大圖)

        時序1,Q2零電壓開通,反向電流經(jīng)過MOSFET和體二極管,此時次級二極管D2開通,D1關(guān)段。

        -傳統(tǒng)MOSFET此時電子電流經(jīng)溝道區(qū),從而減少空穴數(shù)量

        -CoolMOS此時同傳統(tǒng)MOSFET一樣電子電流經(jīng)溝道,穴減少,不同的是此時CoolMOS 的P井結(jié)構(gòu)開始建立。

        時序2,Q1和Q2同時關(guān)斷,反向電流經(jīng)過MOSFETQ2體二極管。

        Q1和Q2關(guān)斷時對于傳統(tǒng)MOSFET和CoolMOS來說內(nèi)部電子和空穴路徑和流向并沒有太大的區(qū)別。

        時序3,Q1此時開始導(dǎo)通,由于負載的變化,此時MOSFET Q2的體二極管需要很長的時間來反向恢復(fù)。當(dāng)二極管反向恢復(fù)沒有完成時MOSFET Q2出現(xiàn)硬關(guān)斷, 此時Q1開通,加在Q2體二極管上的電壓會在二極管形成一個大電流從而觸發(fā)MOSFET內(nèi)部的BJT造成雪崩。

        -傳統(tǒng)MOSFET此時載流子抽出,此時電子聚集在PN節(jié)周圍, 空穴電流擁堵在PN節(jié)邊緣。

        -CoolMOS的電子電流和空穴電流各行其道, 此時空穴電流在已建立好的P井結(jié)構(gòu)中流動,并無電子擁堵現(xiàn)象。

        綜上, 當(dāng)LLC電路出現(xiàn)過載,短路,動態(tài)負載等條件下, 一旦二極管在死區(qū)時間不能及時反向恢復(fù), 產(chǎn)生的巨大的復(fù)合電流會觸發(fā)MOSFET內(nèi)部的BJT使MOSFET失效。

        有的 CoolMOS采用Super Juction結(jié)構(gòu), 這種結(jié)構(gòu)在MOSFET硬關(guān)斷的狀態(tài)下, 載流子會沿垂直構(gòu)建的P井中復(fù)合, 基本上沒有側(cè)向電流, 大大減少觸發(fā)BJT的機會。

        4.如何更容易實現(xiàn)ZVS

        通過以上的分析,可以看到增加MOSFET的死區(qū)時間,可以提供足夠的二極管反向恢復(fù)時間同時降低高dv/dt, di/dt 對LLC電路造成的風(fēng)險。但是增加死區(qū)時間是唯一的選擇么?下面我們進一步分析如何夠降低風(fēng)險提升系統(tǒng)效率。

        圖7

        對于LLC 電路來說死區(qū)時間的初始電流為

        而LLC能夠?qū)崿F(xiàn)ZVS必須滿足

        而最小勵磁電感為

        根據(jù)以上3個等式,我們可以通過以下三種方式讓LLC實現(xiàn)ZVS.

        第一, 增加Ipk.

        第二, 增加死區(qū)時間。

        第三, 減小等效電容Ceq即Coss.

        從以上幾種狀況,我們不難分析出。增加Ipk會增加電感尺寸以及成本,增加死區(qū)時間會降低正常工作時的電壓,而最好的選擇無疑是減小Coss,因為減小無須對電路做任何調(diào)整,只需要換上一個Coss相對較小MOSFET即可。

        5.結(jié)論

        LLC 拓撲廣泛的應(yīng)用于各種當(dāng)中,而這種拓撲在提升效率的同時也對MOSFET提出了新的要求。不同于硬開關(guān)拓撲,軟開關(guān)LLC諧振拓撲,不僅僅對MOSFET的導(dǎo)通電阻(導(dǎo)通損耗),Qg(開關(guān)損耗)有要求,同時對于如何能夠有效的實現(xiàn)軟開關(guān),如何降低失效率,提升系統(tǒng)可靠性,降低系統(tǒng)的成本有更高的要求。CoolMOS,具有快速的體二極管,低Coss,有的可高達650V的擊穿電壓,使LLC拓撲具有更高的效率和可靠性。



        關(guān)鍵詞: 開關(guān)電源

        評論


        相關(guān)推薦

        技術(shù)專區(qū)

        關(guān)閉