中文字幕 另类精品,亚洲欧美一区二区蜜桃,日本在线精品视频免费,孩交精品乱子片免费

<sup id="3hn2b"></sup>

    1. <sub id="3hn2b"><ol id="3hn2b"></ol></sub><legend id="3hn2b"></legend>

      1. <xmp id="3hn2b"></xmp>

      2. 新聞中心

        EEPW首頁 > 模擬技術 > 設計應用 > 針對模擬濾波器的單芯片解決方案

        針對模擬濾波器的單芯片解決方案

        作者: 時間:2010-11-27 來源:網絡 收藏

          從設計規(guī)范階段開始,工程師就應該明確每個濾波器所需要的頻率響應,振幅比頻率的斜率,以及是低通還是高通濾波器,是帶通還是陷波濾波。可能需要限制濾波器溢出現有的電源電壓;這是特別重要的,例如系統(tǒng)要在像MP3播放器一樣的便攜式應用中使用低電壓電池的情況。當電源電壓,頻率類型和響應決定后,下一步就是將響應曲線所需要的特征轉換為標準響應類型。

        本文引用地址:http://www.antipu.com.cn/article/187709.htm

          確定響應曲線

          Butterworth,Bessel,Chebyshev的最常見的傳統(tǒng)響應曲線如表1.0所示。除此之外還存在許多其他的響應曲線,但是其中一些是基于這些基本曲線的,只不過階數更高,例如在高端音頻分頻器中常見的2階Linkwitz-Riley就是由兩個一階Butterworth濾波器組成的。

          


          Butterworth是最常見的濾波器類型,因為其具有相比其他任何濾波器來說,最精密的平頂通帶。Butterworth屬于二類濾波器,意味著波紋被限制在阻帶內。

          Chebshev是一類濾波器,響應曲線比Butterworth更為陡峭,但是它在通帶內會受到波紋的影響。

          Cauer頻率響應可以是一類,也可以是二類,因為在通帶和阻帶中的波紋都可以獨立調整。對于給定的波紋值,它在阻帶和通帶之間具有最快的增益躍遷。

          Bessel頻率響應適合于需要線性相位響應的系統(tǒng),并且在通帶中具有最大的平坦群延時。因此,在波形保持非常重要的音頻電路中很受歡迎。

          頻率的斜率

          電路中電抗性元件的個數,不論是電感性還是電容性元件,決定了電路中的“階”數。一個電阻加上一個電容就是第一階,并且加入到電路中的每個電抗性組件都會相應增加一階。當頻率相同時,每一階會讓斜率變得更大,每八度增加6dB。

          濾波器的階數越高,響應曲線越接近垂直,如圖1.0所示。

          

        濾波器的階數越高

          模擬或數字

          采用數字要取決于許多因素;數字通常會花費較長的開發(fā)時間,需要更多的資源,并且可能無法達到與相同的性價比。使用數字濾波器的器件,比如FPGA或CPU,需要將模擬信號轉換成數字信號以進行濾波,然后再重新轉換成模擬信號。DSP解決能提供復雜處理的能力,但是這種額外的靈活性需要更多的開發(fā)工作和更高的花費。

          在做出決定以前,主要應該考慮的是設計中其他必要功能模塊的復雜性。

          濾波器設計的傳統(tǒng)方式

          拉普拉斯變換可以通過計算或從標準響應曲線公式中進行更為普遍的查找來實現。

          公式1.0是針對三階Butterworth濾波器進行的變換,其中:s=o+i。w,(實數+復數部分)

          變換分子和分母可以進行分解因子計算,以找到公式的極點與零點。

          使用極點和零點的濾波穩(wěn)定性

          極點是能夠使分母為0(或H(s)=無窮大)的“s”的數值,“零點”是能夠讓分子為0的 “s” 的數值。為了使濾波器穩(wěn)定,極點的數值必須大于零點的數值。由于公式1.0只有極點存在,表明該三階Butterworth穩(wěn)定,并且沒有擺動。

          如果濾波器的時間相對振幅響應需要進行檢驗,則對公式可以進行反拉普拉斯變換,以使其回到時間域。沒有必要在模擬 “s”平面和“z”平面之間進行轉換,因為已經可以使用數字方案了。


        上一頁 1 2 3 下一頁

        評論


        相關推薦

        技術專區(qū)

        關閉