淺談無線通訊的噪聲干擾與驗證要點

在此必須強調一個觀念,那就是載臺噪聲的存在是不可避免的,我們不可能將噪聲降到零值,因為模塊必須透過系統(tǒng)供電,而模塊所放置的位置也會影響到鄰近其它模塊與接口,其中勢必會有噪聲的產生。不過載臺噪聲的存在雖然不可避免,卻可以設法讓其干擾降到最低、而不致影響通訊表現的程度,這也就是為什么我們要去量測噪聲、找出干擾源的原因。
本文引用地址:http://www.antipu.com.cn/article/133939.htm然而,要量測出載臺噪聲干擾并非難事,但若要驗證載臺噪聲的來源有哪些、以及個別來源造成的干擾程度,則需要非常復雜與細致的量測方法,而這絕對是開發(fā)者的一大挑戰(zhàn)。光是控制變因并對可能造成干擾的組件進行交叉量測,彼此間便可以產生上千種組合,像是不同的通訊頻道間、Bluetooth與Wi-Fi、Wi-Fi與3G、3G與GPS等等,都可能因為訊號共存(Co-existence)、串音(Crosstalk)等狀況造成訊號損耗。如何透過正確的量測順序與手法、并將其間耗時的交叉量測加以自動化,以有效判斷主要噪聲源,便是其中的學問所在。
降低噪聲的首要重點:制定合理的噪聲預算(Noise Budget)以進行調變
在了解到載臺噪聲的干擾會造成接收感度惡化的情形,并且已知如何量測后,下一個重點就在設定出裝置噪聲的許可值,也就是制訂出合理的噪聲預算(Noise Budget),才能為裝置做出最適宜的調整。也就是說,在得知該無線通訊技術可以如何解調(例如已知該3G模塊的惡化情形是可以透過GPS模塊解調的),了解到噪聲大小與Eb/No(系統(tǒng)平均訊噪比)后,設定出合宜的噪聲容許值,才能進行噪聲干擾的修正(而非消除)。
然而,這樣的修正并非單一組件的校正,而是需要一連串環(huán)環(huán)相扣的驗證與修改。舉例來說,當裝置的屏幕對天線接收造成干擾時,要進行調變的不只是面板本身,還包括了背后的顯示卡、輸入輸出功率、線路的設計、LVDS接口等,甚至是天線的表面電流分布方式,都需要進行調變。從圖三簡略的圖示便可看出,影響無線裝置訊號接收能力的可變因素有許多,而彼此間均有牽一發(fā)而動全身的依存關系。因此,依據實際的載臺噪聲狀況,訂定出合理的噪聲預算,再據此進行調變以降低噪聲,才是能有效提升產品質量的關鍵?! ?/p>

實例說明:最大干擾源--觸控面板
如前所述,觸控面板是各類以觸控為核心應用的新式裝置中所占面積最大的組件,相應產生的干擾問題也就越多,因此,確保其所造成的載臺噪聲能控制在噪聲預算內,自然是驗證時的第一要務。根據百佳泰的驗證經驗,目前在智能型手機及平板裝置中,約莫有60%的干擾問題都來自于觸控面板,其中又有70%是源于面板里的IC控制芯片,接下來我們就將針對觸控面板的驗證要點進行說明。
觸控面板顧名思義,就是具備觸控功能的面板,然而,觸控面板第一個所需要克服的干擾,不是來自同一裝置內的其它模塊或接口,而是面板本身對觸控功能所產生的干擾。包括像是面板的像素電極(Pixel Electrode)、像素頻率(Pixel Clock)、儲存電容(Storage Capacitor)、逐線顯示(Line-by-Line Address)背光板模塊(Back Light Unit)等都會造成面板對觸控的干擾。
此時就要去量測觸控時的電壓,掃瞄并觀察在不同時間以及使用不同觸控點的電壓變化,以了解實際載臺噪聲的狀況,才能進行適當的調變?;径?,觸控的掃瞄電壓約是100~200k,而屏幕的更新率則是五毫秒(ms),以檢查所有觸控點,這種低周期的頻率便非常容易造成對GPS及SIM卡的干擾。因此,觸控面板必須提高電壓才能解決面板的干擾,也就是透過微幅降低觸控感應的靈敏度,以換來載臺噪聲降低;而在實際量測觀察時,除了需要透過精確的夾具與儀器外,也必須量測時域(而非頻率),才能得到真正的錯誤率(BER)數據。
評論