中文字幕 另类精品,亚洲欧美一区二区蜜桃,日本在线精品视频免费,孩交精品乱子片免费

<sup id="3hn2b"></sup>

    1. <sub id="3hn2b"><ol id="3hn2b"></ol></sub><legend id="3hn2b"></legend>

      1. <xmp id="3hn2b"></xmp>

      2. 新聞中心

        EEPW首頁 > 嵌入式系統(tǒng) > 設計應用 > ARM Linux 進程調度(2.4.x)

        ARM Linux 進程調度(2.4.x)

        作者: 時間:2011-02-25 來源:網(wǎng)絡 收藏
        ARM Linux 進程調度(2.4.x) FireAngel(原作)

        小弟最近研究了一段時間的ARM Linux,想把進程管理方面的感受跟大家交流下,不對的地方多多指點

        ----------------------------------------------

        Process Creation and Termination
        Process Scheduling and Dispatching
        Process Switching
        Porcess Synchronization and support for interprocess communication
        Management of process control block

        -------from Operating system:internals and design principles>


        進程調度


        Linux2.4.x是一個基于非搶占式的多任務的分時操作系統(tǒng),雖然在用戶進程的調度上采用搶占式策略,但是而在內核還是采用了輪轉的方法,如果有個內核態(tài)的線程惡性占有CPU不釋放,那系統(tǒng)無法從中解脫出來,所以實時性并不是很強。這種情況有望在Linux 2.6版本中得到改善,在2.6版本中采用了搶占式的調度策略。


        內核中根據(jù)任務的實時程度提供了三種調度策略:


        1. SCHED_OTHER為非實時任務,采用常規(guī)的分時調度策略;


        2. SCHED_FIFO為短小的實時任務,采用先進先出式調度,除非有更高優(yōu)先級進程申請運行,否則該進程將保持運行至退出才讓出CPU;


        3. SCHED_RR任務較長的實時任務,由于任務較長,不能采用FIFO的策略,而是采用輪轉式調度,該進程被調度下來后將被置于運行隊列的末尾,以保證其他實時進程有機會運行。


        需要說明的是,SCHED_FIFO和SCHED_RR兩種調度策略之間沒有優(yōu)先級上的區(qū)別,主要的區(qū)別是任務的大小上。另外,task_struct結構中的policy中還包含了一個SCHED_YIELD位,置位時表示該進程主動放棄CPU。


        在上述三種調度策略的基礎上,進程依照優(yōu)先級的高低被分別調系統(tǒng)。優(yōu)先級是一些簡單的整數(shù),它代表了為決定應該允許哪一個進程使用CPU的資源時判斷方便而賦予進程的權值——優(yōu)先級越高,它得到CPU時間的機會也就越大。


        在Linux中,非實時進程有兩種優(yōu)先級,一種是靜態(tài)優(yōu)先級,另一種是動態(tài)優(yōu)先級。實時進程又增加了第三種優(yōu)先級,實時優(yōu)先級。


        1. 靜態(tài)優(yōu)先級(priority)——被稱為“靜態(tài)”是因為它不隨時間而改變,只能由用戶進行修改。它指明了在被迫和其它進程競爭CPU之前該進程所應該被允許的時間片的最大值(20)。


        2. 動態(tài)優(yōu)先級(counter)——counter 即系統(tǒng)為每個進程運行而分配的時間片,Linux兼用它來表示進程的動態(tài)優(yōu)先級。只要進程擁有CPU,它就隨著時間不斷減??;當它為0時,標記進程重新調度。它指明了在當前時間片中所剩余的時間量(最初為20)。


        3. 實時優(yōu)先級(rt_priority)——值為1000。Linux把實時優(yōu)先級與counter值相加作為實時進程的優(yōu)先權值。較高權值的進程總是優(yōu)先于較低權值的進程,如果一個進程不是實時進程,其優(yōu)先權就遠小于1000,所以實時進程總是優(yōu)先。


        在每個tick到來的時候(也就是時鐘中斷發(fā)生),系統(tǒng)減小當前占有CPU的進程的counter,如果counter減小到0,則將need_resched置1,中斷返回過程中進行調度。update_process_times()為時鐘中斷處理程序調用的一個子函數(shù):


        void update_process_times(int user_tick)
        {
        struct task_struct *p = current;
        int cpu = smp_processor_id(), system = user_tick ^ 1;

        update_one_process(p, user_tick, system, cpu);
        if (p->pid) {
        if (--p->counter = 0) {
        p->counter = 0;
        p->need_resched = 1;
        }
        if (p->nice > 0)
        kstat.per_cpu_nice[cpu] = user_tick;
        else
        kstat.per_cpu_user[cpu] = user_tick;
        kstat.per_cpu_system[cpu] = system;
        } else if (local_bh_count(cpu) || local_irq_count(cpu) > 1)
        kstat.per_cpu_system[cpu] = system;
        }

        Linux中進程的調度使在schedule()函數(shù)中實現(xiàn)的,該函數(shù)在下面的ARM匯編片斷中被調用到:

        /*
        * This is the fast syscall return path. We do as little as
        * possible here, and this includes saving r0 back into the SVC
        * stack.
        */
        ret_fast_syscall:
        ldr r1, [tsk, #TSK_NEED_RESCHED]
        ldr r2, [tsk, #TSK_SIGPENDING]
        teq r1, #0 need_resched || sigpending
        teqeq r2, #0
        bne slow
        fast_restore_user_regs

        /*
        * Ok, we need to do extra processing, enter the slow path.
        */
        slow: str r0, [sp, #S_R0 S_OFF]! returned r0
        b 1f

        /*
        * "slow" syscall return path. "why" tells us if this was a real syscall.
        */
        reschedule:
        bl SYMBOL_NAME(schedule)
        ENTRY(ret_to_user)
        ret_slow_syscall:
        ldr r1, [tsk, #TSK_NEED_RESCHED]
        ldr r2, [tsk, #TSK_SIGPENDING]
        1: teq r1, #0 need_resched => schedule()
        bne reschedule 如果需要重新調度則調用schedule
        teq r2, #0 sigpending => do_signal()
        blne __do_signal
        restore_user_regs



        而這段代碼在中斷返回或者系統(tǒng)調用返回中反復被調用到。

        1. 進程狀態(tài)轉換時: 如進程終止,睡眠等,當進程要調用sleep()或exit()等函數(shù)使進程狀態(tài)發(fā)生改變時,這些函數(shù)會主動調用schedule()轉入進程調度。

        2. 可運行隊列中增加新的進程時;

        ENTRY(ret_from_fork)
        bl SYMBOL_NAME(schedule_tail)
        get_current_task tsk
        ldr ip, [tsk, #TSK_PTRACE] check for syscall tracing
        mov why, #1
        tst ip, #PT_TRACESYS are we tracing syscalls?
        beq ret_slow_syscall
        mov r1, sp
        mov r0, #1 trace exit [IP = 1]
        bl SYMBOL_NAME(syscall_trace)
        b ret_slow_syscall 跳轉到上面的代碼片斷



        3. 在時鐘中斷到來后:Linux初始化時,設定系統(tǒng)定時器的周期為10毫秒。當時鐘中斷發(fā)生時,時鐘中斷服務程序timer_interrupt立即調用時鐘處理函數(shù)do_timer( ),在do_timer()會將當前進程的counter減1,如果counter為0則置need_resched標志,在從時鐘中斷返回的過程中會調用schedule.

        4. 進程從系統(tǒng)調用返回到用戶態(tài)時;判斷need_resched標志是否置位,若是則轉入執(zhí)行schedule()。系統(tǒng)調用實際上就是通過軟中斷實現(xiàn)的,下面是ARM平臺下軟中斷處理代碼。

        .align 5
        ENTRY(vector_swi)
        save_user_regs
        zero_fp
        get_scno

        enable_irqs ip

        str r4, [sp, #-S_OFF]! push fifth arg

        get_current_task tsk
        ldr ip, [tsk, #TSK_PTRACE] check for syscall tracing
        bic scno, scno, #0xff000000 mask off SWI op-code
        eor scno, scno, #OS_NUMBER 20 check OS number
        adr tbl, sys_call_table load syscall table pointer
        tst ip, #PT_TRACESYS are we tracing syscalls?
        bne __sys_trace

        adrsvc al, lr, ret_fast_syscall 裝載返回地址,用于在跳轉調用后返回到
        上面的代碼片斷中的ret_fast_syscall
        cmp scno, #NR_syscalls check upper syscall limit
        ldrcc pc, [tbl, scno, lsl #2] call sys_* routine

        add r1, sp, #S_OFF
        2: mov why, #0 no longer a real syscall
        cmp scno, #ARMSWI_OFFSET
        eor r0, scno, #OS_NUMBER 20 put OS number back
        bcs SYMBOL_NAME(arm_syscall)
        b SYMBOL_NAME(sys_ni_syscall) not private func



        5. 內核處理完中斷后,進程返回到用戶態(tài)。

        6. 進程主動調用schedule()請求進行進程調度。

        ----------------------------------------------

        schedule()函數(shù)分析:


        /*
        * 'schedule()' is the scheduler function. It's a very simple and nice
        * scheduler: it's not perfect, but certainly works for most things.
        *
        * The goto is "interesting".
        *
        * NOTE!! Task 0 is the 'idle' task, which gets called when no other
        * tasks can run. It can not be killed, and it cannot sleep. The 'state'
        * information in task[0] is never used.
        */
        asmlinkage void schedule(void)
        {
        struct schedule_data * sched_data;
        struct task_struct *prev, *next, *p;
        struct list_head *tmp;
        int this_cpu, c;

        spin_lock_prefetch(runqueue_lock);

        if (!current->active_mm) BUG();
        need_resched_back:
        prev = current;
        this_cpu = prev->processor;

        if (unlikely(in_interrupt())) {
        printk("Scheduling in interrupt");
        BUG();
        }

        release_kernel_lock(prev, this_cpu);

        /*
        * 'sched_data' is protected by the fact that we can run
        * only one process per CPU.
        */
        sched_data = aligned_data[this_cpu].schedule_data;

        spin_lock_irq(runqueue_lock);

        /* move an exhausted RR process to be last.. */
        if (unlikely(prev->policy == SCHED_RR))
        /*
        * 如果采用輪轉法調度,則重新檢查counter是否為0, 若是則將其掛到運行隊列的最后
        */
        if (!prev->counter) {
        prev->counter = NICE_TO_TICKS(prev->nice);
        move_last_runqueue(prev);
        }

        switch (prev->state) {
        case TASK_INTERRUPTIBLE:
        /*
        * 如果是TASK_INTERRUPTIBLE,并且能夠喚醒它的信號已經(jīng)來臨,
        * 則將狀態(tài)置為TASK_RUNNING
        */
        if (signal_pending(prev)) {
        prev->state = TASK_RUNNING;
        break;
        }
        default:
        del_from_runqueue(prev);
        case TASK_RUNNING:;
        }
        prev->need_resched = 0;

        /*
        * this is the scheduler proper:
        */

        repeat_schedule:
        /*
        * Default process to select..
        */
        next = idle_task(this_cpu);
        c = -1000;
        list_for_each(tmp, runqueue_head) {
        /*
        * 遍歷運行隊列,查找優(yōu)先級最高的進程, 優(yōu)先級最高的進程將獲得CPU
        */
        p = list_entry(tmp, struct task_struct, run_list);
        if (can_schedule(p, this_cpu)) {
        /*
        * goodness()中,如果是實時進程,則weight = 1000 p->rt_priority,
        * 使實時進程的優(yōu)先級永遠比非實時進程高
        */
        int weight = goodness(p, this_cpu, prev->active_mm);
        if (weight > c) /注意這里是”>”而不是”>=”,如果權值相同,則先來的先上
        c = weight, next = p;
        }
        }

        /* Do we need to re-calculate counters? */
        if (unlikely(!c)) {
        /*
        * 如果當前優(yōu)先級為0,那么整個運行隊列中的進程將重新計算優(yōu)先權
        */
        struct task_struct *p;

        spin_unlock_irq(runqueue_lock);
        read_lock(tasklist_lock);
        for_each_task(p)
        p->counter = (p->counter >> 1) NICE_TO_TICKS(p->nice);
        read_unlock(tasklist_lock);
        spin_lock_irq(runqueue_lock);
        goto repeat_schedule;
        }

        /*
        * from this point on nothing can prevent us from
        * switching to the next task, save this fact in sched_data.
        */
        sched_data->curr = next;
        task_set_cpu(next, this_cpu);
        spin_unlock_irq(runqueue_lock);

        if (unlikely(prev == next)) {
        /* We won't go through the normal tail, so do this by hand */
        prev->policy = ~SCHED_YIELD;
        goto same_process;
        }

        kstat.context_swtch ;
        /*
        * there are 3 processes which are affected by a context switch:
        *
        * prev == .... ==> (last => next)
        *
        * It's the 'much more previous' 'prev' that is on next's stack,
        * but prev is set to (the just run) 'last' process by switch_to().
        * This might sound slightly confusing but makes tons of sense.
        */
        prepare_to_switch(); {
        struct mm_struct *mm = next->mm;
        struct mm_struct *oldmm = prev->active_mm;
        if (!mm) { /如果是內核線程的切換,則不做頁表處理
        if (next->active_mm) BUG();
        next->active_mm = oldmm;
        atomic_inc(oldmm->mm_count);
        enter_lazy_tlb(oldmm, next, this_cpu);
        } else {
        if (next->active_mm != mm) BUG();
        switch_mm(oldmm, mm, next, this_cpu); /如果是用戶進程,切換頁表
        }

        if (!prev->mm) {
        prev->active_mm = NULL;
        mmdrop(oldmm);
        }
        }

        /*
        * This just switches the register state and the stack.
        */
        switch_to(prev, next, prev);
        __schedule_tail(prev);

        same_process:
        reacquire_kernel_lock(current);
        if (current->need_resched)
        goto need_resched_back;
        return;
        }

        ----------------------------------------------
        ARM Linux 進程調度(3)

        switch_mm中是進行頁表的切換,即將下一個的pgd的開始物理地址放入CP15中的C2
        寄存器。進程的pgd的虛擬地址存放在task_struct結構中的pgd指針中,通過
        __virt_to_phys宏可以轉變成成物理地址。


        static inline void
        switch_mm(struct mm_struct *prev, struct mm_struct *next,
        struct task_struct *tsk, unsigned int cpu)
        {
        if (prev != next)
        cpu_switch_mm(next->pgd, tsk);
        }

        #define cpu_switch_mm(pgd,tsk) cpu_set_pgd(__virt_to_phys((unsigned long)(pgd)
        ))

        #define cpu_get_pgd()
        ({
        unsigned long pg;
        __asm__("mrc p15, 0, %0, c2, c0, 0"
        : "=r" (pg));
        pg = ~0x3fff;
        (pgd_t *)phys_to_virt(pg);
        })


        switch_to()完成進程上下文的切換,通過調用匯編函數(shù)__switch_to
        完成,其實現(xiàn)比較簡單,也就是保存prev進程的上下文信息,該上下文信息由
        context_save_struct結構描述,包括主要的寄存器,然后將next
        的上下文信息讀出,信息保存在task_struct中的thread.save中TSS_SAVE標識了thread.
        save在task_struct中的位置。


        /*
        * Register switch for ARMv3 and ARMv4 processors
        * r0 = previous, r1 = next, return previous.
        * previous and next are guaranteed not to be the same.
        */
        ENTRY(__switch_to)
        stmfd sp!, {r4 - sl, fp, lr} Store most regs on
        stack
        mrs ip, cpsr
        str ip, [sp, #-4]! Save cpsr_SVC
        str sp, [r0, #TSS_SAVE] Save sp_SVC
        ldr sp, [r1, #TSS_SAVE] Get saved sp_SVC
        ldr r2, [r1, #TSS_DOMAIN]
        *
        * Returns amount of memory which needs to be reserved.
        */


        long ed_init(long mem_start, int mem_end)
        {
        int i,
        ep;

        short tshort,
        version,
        length,
        s_ofs;

        if (register_blkdev(EPROM_MAJOR,"ed",ed_fops)) {
        printk("EPROMDISK: Unable to get major %d.n", EPROM_MAJOR);
        return 0;
        }
        blk_dev[EPROM_MAJOR].request_fn = DEVICE_REQUEST;

        for(i=0;i 4) {
        printk("EPROMDISK: Length (%d) Too short.n", length);
        return 0;
        }

        ed_length = length * 512;
        sector_map = ep 6;
        sector_offset = ep s_ofs;

        printk("EPROMDISK: Version %d installed, %d bytesn", (int)version, ed_length);
        return 0;
        }


        int get_edisk(unsigned char *buf, int sect, int num_sect)
        {
        short ss, /* Sector start */
        tshort;
        int s; /* Sector offset */

        for(s=0;s0;) {
        sock = bp / EPROM_SIZE;
        page = (bp % EPROM_SIZE) / EPAGE_SIZE;
        offset = bp % EPAGE_SIZE;

        nb = (len offset)>EPAGE_SIZE?EPAGE_SIZE-(offset%EPAGE_SIZE):len;

        cr1 = socket[sock] | ((page 4) 0x30) | 0x40; /* no board select for now */
        cr2 = (page >> 2) 0x03;
        outb((char)cr1,CONTROL_REG1);
        outb((char)cr2,CONTROL_REG2);

        memcpy(buf bofs,(char *)(EPROM_WINDOW offset),nb);

        len -= nb;
        bp = nb;
        bofs = nb;
        }
        return 0;
        }

        med.c代碼如下:
        /* med.c - make eprom disk image from ramdisk image */

        #include
        #include
        #include
        #define DISK_SIZE (6291456)
        #define NUM_SECT (DISK_SIZE/512)

        void write_eprom_image(FILE *fi, FILE *fo);

        int main(int ac, char **av)
        {
        FILE *fi,
        *fo;

        char fin[44],
        fon[44];

        if (ac > 1) {
        strcpy(fin,av[1]);
        } else {
        strcpy(fin,"hda3.ram");
        }

        if (ac > 2) {
        strcpy(fon,av[2]);
        } else {
        strcpy(fon,"hda3.eprom");
        }

        fi = fopen(fin,"r");
        fo = fopen(fon,"w");

        if (fi == 0 || fo == 0) {
        printf("Can't open filesn");
        exit(0);
        }

        write_eprom_image(fi,fo);

        fclose(fi);
        fclose(fo);
        }

        void write_eprom_image(FILE *fi, FILE *fo)
        {
        char *ini;
        char *outi; /* In and out images */
        short *smap; /* Sector map */
        char *sp;
        char c = 0;

        struct {
        unsigned short version;
        unsigned short blocks;
        unsigned short sect_ofs;
        } hdr;

        int ns,
        s,
        i,
        fs;

        ini = (char *)malloc(DISK_SIZE); /* Max disk size is currently 6M */
        outi = (char *)malloc(DISK_SIZE); /* Max disk size is currently 6M */
        smap = (short *)malloc(NUM_SECT*sizeof(short));

        if (ini == NULL || outi == NULL || smap == NULL) {
        printf("Can't allocate memory :(n");
        exit(0);
        }

        if (DISK_SIZE != fread(ini,1,DISK_SIZE,fi)) {
        printf("Can't read input file :(n");
        exit(0);
        }

        memcpy(outi,ini,512); /* Copy in first sector */
        smap[0] = 0;
        ns = 1; /* Number of sectors in outi */





        參考書目:
        [1]《GNU/Linux編程指南》 (美)K.Wall,M.Watson 清華大學出版社 1999
        [2] 《Linux實用指南》 (美)諾頓、格蕾菲斯著 翟大昆等譯 機械工業(yè)出版社 1999
        [3]《系統(tǒng) -- 使用 C 與 C 》 Michael Barr 美商歐萊禮 1999
        [4] 《LINUX操作指南》 本社 人民郵電出版社 1999
        [5] 《Linux 實用大全》 楊文志編著 北京清華大學出版社 1999
        [6] 《單片機與系統(tǒng)應用》 何立民 北京航空航天大學出版社 1999
        [7] 《Linux內核源代碼分析》 (美)馬克斯韋爾 機械工業(yè)出版社 2000
        [8] 《UNIX操作系統(tǒng)設計與實現(xiàn)》 陳華瑛、李建國 電子工業(yè)出版社出版 1999

        參考文獻:
        [1]《frambuffer howto》 Geert Uytterhoeven www.linuxdoc.org 1998
        [2] 《RTAI Beginner Guide》Emanuele Bianchi www.rtai.org
        [3] 《Booting Linux from EPROM》 Dave Bennett www.linuxjournal.com
        [4]《ramdiskhowto》 Paul Gortmaker www.linuxdoc.org 1995
        [5]《kernelhowto》 Juan-Mariano de Goyeneche www.linuxdoc.org 2000
        [6] 《Embedded Linux Howto》 Sebastien Huet www.linux-embedded.com 2000
        [7]《lilohowto》 m.skoric www.linuxdoc.org 2001
        [8]《linux from scratch howto》 Gerard Beekmans www.linux-embedded.com 2000
        [9]《glibc2howto》 Eric Green www.linux.com 1998
        [10] 《Kernel Jorn》Alessandro Rubini Georg Zezchwitz 《Linux Journal》1996
        [11]《rtlinux doc》 Michael Barabanov www.rtlinux.com 2001
        [12]《the linux boot disk howto》 Tom Fawcett www.linux-embedded.com 2000

        linux操作系統(tǒng)文章專題:linux操作系統(tǒng)詳解(linux不再難懂)


        評論


        相關推薦

        技術專區(qū)

        關閉