中文字幕 另类精品,亚洲欧美一区二区蜜桃,日本在线精品视频免费,孩交精品乱子片免费

<sup id="3hn2b"></sup>

    1. <sub id="3hn2b"><ol id="3hn2b"></ol></sub><legend id="3hn2b"></legend>

      1. <xmp id="3hn2b"></xmp>

      2. 新聞中心

        EEPW首頁 > 電源與新能源 > 設(shè)計應(yīng)用 > 零轉(zhuǎn)換PWM DC-DC變換器的拓撲綜述

        零轉(zhuǎn)換PWM DC-DC變換器的拓撲綜述

        作者: 時間:2012-01-16 來源:網(wǎng)絡(luò) 收藏
        2.3 改進拓撲之二

        圖3


          圖3所示為文獻[6]中提出的另一種新穎的變換器拓撲。與圖3的普通變換器相比,該改進的拓撲只是在輔助諧振網(wǎng)絡(luò)增加了一個電容,少了一個二極管。以下對其工作過程進行分析。

          在分析中,假設(shè)與1.2基本相同,并設(shè)初始狀態(tài)為:
        ,則電路在穩(wěn)態(tài)時,每個開關(guān)周期可劃分為7個模態(tài):



          可見,該拓撲結(jié)構(gòu)實現(xiàn)了主開關(guān)管 在ZVS條件下通斷,輔助開關(guān)管 在零電壓、零電流的條件下關(guān)斷與開通,兩個開關(guān)管都是軟通斷,改善了開關(guān)環(huán)境,克服了普通變換器的輔助開關(guān)管為硬開關(guān)的缺點,減小了關(guān)斷損耗。

        2.4 改進拓撲之三

        圖4


          圖4所示為文獻[7]提出的另一種改進的ZVT-PWM變換器拓撲。與圖4的普通ZVT-PWM變換器相比,該改進的拓撲只是在輔助諧振網(wǎng)絡(luò)增加了一個電感、一個二極管和一個電容。其工作原理的分析與前面的基本相似,具體分析可以參考文獻[7]。從中可知,主開關(guān)管S1在零電壓下開通和關(guān)斷,輔助開關(guān)管S2在零電流下開通和關(guān)斷,從而克服了普通的ZVT-PWM變換器輔助開關(guān)管為硬開關(guān)的缺點,減小了開關(guān)損耗,實現(xiàn)了兩個開關(guān)都是軟開關(guān)。


        3 變換器

        3.1 普通的變換器

        圖5


          ZVT-PWM變換器能實現(xiàn)在ZVS下開通,消除導(dǎo)通損耗,但卻不能有效地減小關(guān)斷損耗。而普通的變換器[8],如圖5所示,則能實現(xiàn)主開關(guān)在ZCS下關(guān)斷,消除關(guān)斷損耗。但是,其輔助開關(guān)仍然是硬開關(guān),而且,其輸出整流二極管存在嚴重的反向恢復(fù)問題,導(dǎo)致大的導(dǎo)通損耗。雖然通過改變控制策略,使輔助開關(guān)導(dǎo)通時間更長一些,可以實現(xiàn)輔助開關(guān)管在ZCS下關(guān)斷,但輔助開關(guān)管的峰值電流將較大。

        3.2 改進拓撲之一

          文獻[9]提出了一種改進的ZCT-PWM變換器。該改進的拓撲只是將諧振網(wǎng)絡(luò)的輔助開
        和嵌位二極管
        交換位置,能實現(xiàn)所有的開關(guān)管在ZCS下通斷,并減小了輔助開關(guān)管的峰值電流。但它的整流二極管
        仍存在嚴重的反向恢復(fù)問題。

        3.3 改進拓撲之二

          文獻[10]介紹了一種新穎的ZCT-PWM變換器,它很好地解決了以上所提的各項缺點,如圖6所示。與圖5的普通ZVT-PWM變換器相比,該改進的拓撲在元器件數(shù)量方面沒有增減,只是改變了組合方式,但同時實現(xiàn)了主開S和輔助開關(guān)管
        的軟通斷,并解決了輸出整流二極管
        嚴重的反向恢復(fù)問題。以下對其工作過程進行分析。

        圖6


          在分析中,假設(shè)與1.2基本相同,并設(shè)初始狀態(tài)為:主功率開關(guān)管S及輔助開關(guān)管
        均為關(guān)斷狀態(tài),輸出整流二極管
        處于導(dǎo)通狀態(tài)。
        ,則電路在穩(wěn)態(tài)時,每個開關(guān)周期可劃分為8個模態(tài):


        可見,該拓撲實現(xiàn)了所有開關(guān)管和輸出整流二極管
        都在較小的
        下軟開通,在ZCS下關(guān)斷,而且在主開關(guān)管S上沒有附加的電流應(yīng)力和導(dǎo)通損耗,大大減小了輸出整流二極管的反向恢復(fù)電流。


        4 變換器

          近些年,一些電力電子研究中心的工程師們正盡力尋求一種最優(yōu)化的軟開關(guān)技術(shù),即用盡量少的輔助元件,實現(xiàn)功率半導(dǎo)體器件同時在零電壓和零電流下轉(zhuǎn)換,綜合ZVT-PWM變換器和ZCT-PWM變換器的優(yōu)點,進一步完善零轉(zhuǎn)換條件。文獻[11]所介紹一種新穎的 變換器,就能實現(xiàn)主開關(guān)管同時在零電壓和零電流下轉(zhuǎn)換,如圖7所示。以下對其工作過程進行分析。

        圖 7


          在分析中,假設(shè)與1.2基本相同,并設(shè)初始狀態(tài)為:主功率開關(guān)管S及輔助開關(guān)管
        均為關(guān)斷狀態(tài),輸出整流二極管D處于導(dǎo)通狀態(tài),
        ,則電路在穩(wěn)態(tài)時,每個開關(guān)周期可劃分為14個模態(tài):



          可見,該拓撲結(jié)構(gòu)實現(xiàn)了主開關(guān)管S同時在零電壓和零電流條件下開通和關(guān)斷,輔助開關(guān)管
        在零電流條件下開通,零電壓和零電流條件下關(guān)斷,輸出整流二極管D在零電壓下轉(zhuǎn)換,從而既綜合了ZVT-PWM變換器和ZCT-PWM變換器的優(yōu)點,又克服了它們各自的缺點,大大減小了開關(guān)損耗。


        5 總結(jié)

          零轉(zhuǎn)換PWM DC-DC變換器是低電壓(電流)應(yīng)力、高效率的變換器,但傳統(tǒng)的零轉(zhuǎn)換PWM DC-DC變換器仍存在一些問題。為了解決這些問題,人們提出了許多新的改進拓撲。本文對三種改進的ZVT-PWM變換器、一種改進的ZCT-PWM,以及一種新穎的作了詳細介紹和分析。這幾個改進的拓撲都實現(xiàn)了所有開關(guān)管的軟通斷,進一步減小了開關(guān)損耗,效率大為提高,很值得進一步研究和完善。


        參考文獻

        [1]W. A. Tabisz, P. Gradzki, F.C.Lee, “Zero-voltage-switched quasi-resonant buck and fly-back converter-Experimental results at 10MHz”,IEEE Trans. On Power Electronics,vol.4,no.2,April 1989,pp.194~204.

        [2]W. A. Tabisz, F.C. Lee, “Zero-voltage-switching multi-resonant technique-A novel approach to improve performance of high-frequency quasi-resonant converters”, IEEE Power Electronics Specialists Conf.Rec,1988,pp.9~17.

        [3]D.Y. Huh, H,S. Kim, and G.H. Cho. “New group of ZVS PWM converters operable on constant frequency and its application to power factor correction circuit”, IEEE Power Electronics Specialists Conf.Rec,1992,pp.1440~1446.

        [4]G. Hua, C. Leu, and F. C. Lee, “Novel zero voltage transition PWM converters”, IEEE, Power Electronics Specialists Conf. Rec,1992:55~61.

        [5]Hacy Bodur, and A. Faruk Bakan, “A new ZVT-PWM DC-DC converter”, IEEE Trans. On Power Electronics,vol.17,no.1, January 2002,pp. 40~47.

        [6]劉萬強,張代潤,黃念慈,全軟開關(guān)Boost ZVT-PWM 變換器,四川大學(xué)學(xué)報(工程科學(xué)版),V0l 34,No.3,2002,24~26.

        [7]M.L.Martin, H.Z.Grundling, “A ZVT PWM Boost Converter using an Auxiliary Resonant Source”, IEEE,PEDC.2002,pp.1101~1107

        [8]G. Hua, E. Yang, Y. Jiang and F. C. Lee, “Novel zero-current-transition PWM converters ”, in Cof. Rec. IEEE-PESC, 1993:538~544

        [9]H. Mao, Y. Lee and X. W. Zhou, “Improved zero current transition converters for high-power applications”, IEEE. Trans on industry applications,Vol.33,No.5,1997:1220~1231.

        [10]Min-Kwang Lee,Dong-Yun Lee and Dong-seok Hyum, “New zero-current-transition PWM DC/DC converters without current stress”,IEEE,2001,pp:1069~1074.

        [11]C. M. de O. Stein and H. L. Hey, “A true ZCZVT commutation cell for PWM converters”, IEEE, Trans. On Power Electronics , Vol. 15,No.1. 2000:185~193.

        pwm相關(guān)文章:pwm原理



        上一頁 1 2 下一頁

        評論


        相關(guān)推薦

        技術(shù)專區(qū)

        關(guān)閉